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ABSTRACT
This work presents EgoScanning, a video fast-forwarding in-
terface that helps users find important events from lengthy
first-person videos continuously recorded with wearable cam-
eras. This interface features an elastic timeline that adap-
tively changes playback speeds and emphasizes egocentric
cues specific to first-person videos, such as hand manipula-
tions, moving, and conversations with people, on the basis of
computer-vision techniques. The interface also allows users
to input which of such cues are relevant to events of their
interest. Through our user study, we confirm that users can
find events of interest quickly from first-person videos thanks
to the following benefits of using the EgoScanning interface:
1) adaptive changing of playback speeds allows users to watch
fast-forwarded videos more easily; 2) emphasized parts of
videos can act as candidates of events actually significant to
users; and 3) users are able to select relevant egocentric cues
depending on events of their interest.
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INTRODUCTION
Recent advancements in camera technologies have led to a
variety of portable camera devices that can be worn on the
head of a person, such as Google Glass and GoPro Hero.
Videos recorded with such wearable head-mounted cameras
are called first-person videos and are used as a continuous
record of everyday activities from our own perspective. First-
person videos are commonly used to share our experiences
in various activities such as sports and sightseeing with other
people. In the HCI community, first-person videos are also
used for applications such as video surveillance [35], remote
collaboration [12, 13, 21], and life-logging [5, 15, 16].

Despite the widespread use of first-person videos, browsing
techniques for such videos have not yet been well established.
One main difficulty with watching first-person videos arises
when people try to find events related to their interest from
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Figure 1. The proposed interface: The elastic timeline emphasizes
salient parts of the video timeline on the basis of egocentric cues. The
interface also allows users to input which of such cues are relevant to
events of their interest. The red arrow at the bottom right indicates a
user’s input. In this case, the interface emphasizes hand-related events
such as picking up an object.

long, continuously recorded first-person videos, as important
events can be distributed sparsely in such videos. Moreover,
first-person videos tend to have severe camera shake due to
frequent and rapid head motion. These make it difficult for
users to scan first-person videos quickly to locate frames of
interesting events.

In this work, we propose a novel interface design called
EgoScanning for assisting users to browse first-person videos
quickly to find target events of interest. This interface features
an elastic timeline that adaptively changes playback speeds
and emphasizes egocentric cues specific to first-person videos,
such as hand manipulations, walking/standing still, and con-
versing with people (Figure 1). Users can easily select differ-
ent egocentric cues that are relevant to specific events of their
interest. For example, when a user prioritizes hand manipula-
tions, parts of a video that contain hand-related events such as
picking up a tool from a shelf are highlighted in the timeline
and played at slower speed, while the remaining parts of the
video can be fast-forwarded.

The main contribution of this work is twofold: 1) we introduce
a video browsing interface named EgoScanning that allows
users to control playback speeds easily on the basis of different
egocentric cues, and 2) we confirm through a user study the
effectiveness of the proposed interface for helping users to
locate events of interest in long first-person videos. Concretely,
the following benefits of the proposed interface were found
from statistical and qualitative evidences.



• With our elastic timeline, users can scan fast-forwarded first-
person videos more easily by adaptively changing playback
speeds on the basis of egocentric cues.

• Parts of a video emphasized on the elastic timeline can
act as candidates that contain important events. The user
can then examine those parts easily by moving the slider
of the elastic timeline to the emphasized parts, rather than
watching the entire video. This helps significantly reduce
the task completion times in search tasks.

• Users can freely select different egocentric cues that are rel-
evant to events of their interest out of a set of fundamental
egocentric cues. In fact, we observed that the egocentric
cues utilized in our user study were widely different depend-
ing on the types of events in the search tasks.

RELATED WORK

Browsing Support for Conventional Videos
Various techniques to support users in browsing conventional
videos recorded with fixed or hand-held cameras have been
well studied. One example is a video stabilization technique
for videos taken by a shaky hand-held camera [30, 31, 32].
Fast-forwarding techniques such as [17, 2] are also useful to
help users watch videos in reduced time. Several researchers
developed a content-aware fast-forwarding technique that
changes playback speeds dynamically depending on the im-
portance given to each video frame, enabled by using key
clips [43], audio [27], a skimming model [6], and the viewing
histories of other people [24]. Several novel forms of video
visualizations have also been studied: spatio-temporal vol-
ume [37]; positional information [42]; and video synopsis [46,
44, 45]. Direct manipulation techniques have enabled users to
manipulate object positions in video frames to seek specific
video timelines [8, 38, 18, 19]. Video lens allowed users to
interactively explore large collections of baseball videos and
related metadata [36].

Unlike these studies, our focus is on providing an efficient
way to browse first-person videos that have several unique
properties such as recorder-centric scene representations and
continuous recordings with significant camera motion. This
requires us to develop a novel assistance for browsing videos
effectively.

Browsing Support for First-Person Videos
In contrast to conventional videos, research efforts for develop-
ing browsing support techniques for first-person videos have
been limited. The existing techniques can be categorized into
two types: fast-forwarding techniques [26, 41] and video sum-
marization techniques [28, 50, 33, 3]. The fast-forwarding
techniques can reduce camera shake of first-person videos
played at high speed based on 3D geometrical analysis of cap-
tured scenes [26] or by carefully sub-sampling frames [41].
However, such fast-forwarding techniques may not necessarily
be helpful in finding target events of interest because both
important and unimportant parts of a video are played equally
at high speed. In contrast, video summarization techniques
try to extract significant video shots automatically, where the
significance is evaluated on the basis of various factors such as

the presence of people [28], gaze [50], storyline [33], or joint
attention [3]. Yao et al.also proposed a method for highlight
detection for video summarization by using pairwise deep
ranking of first-person videos[51]. Although summarization
can help users comprehend video contents in a shorter amount
of time, there is a risk of some important events being wrongly
omitted in the summarized video.

BROWSING FIRST PERSON VIDEOS
Assume a scenario where users watch first-person videos with
a standard laptop or a computer monitor. Note that such users
are not necessarily the same people who put on a wearable
camera to record such videos. One typical example of such a
scenario is life-logging. Users can replay a day of themselves
from their own points-of-view and relive memorable moments
in life. Another example is learning professional skills. With
first-person videos of sports or cooking scenes recorded by
professionals, one can easily see where to pay attention or how
to use the hands to perform a certain task.

As stated in the introduction, the main difficulty in such sce-
narios is to find events of interest quickly from a video. First-
person videos of a day are often full of mundane scenes like
a daily commute. Even if videos are intentionally taken by
professionals, not all of them have significant parts that show-
case their skills to viewers. As a result, parts of videos that
are potentially significant are distributed sparsely in lengthy
videos and are not apparent to users.

To overcome this difficulty, we propose analyzing various
egocentric cues that can be extracted automatically from first-
person videos. Many computer vision techniques tailored to
first-person videos are now available for a variety of tasks in-
cluding hand activity recognition [9, 11, 4, 34, 14, 29], activity
segmentation [25, 39, 48, 40], and interaction recognition [10,
52, 53, 22]. This work takes an approach of content-aware
video fast-forwarding that changes playback speeds dynam-
ically depending on the importance of each video frame to
quickly seek events of interest from first-person videos. The
importance of each frame can be automatically extracted by
computer-vision techniques. This approach allows users to
selectively browse extracted frames with slower speeds than
other frames.

However, these computer-vision techniques sometimes cause
false alarms and missed detection (i.e., false positives and
negatives) under conditions such as extreme lighting environ-
ments and crowded scenes. As reported in a previous work,
such detection errors adversely affect users’ compliance with
and reliance on these systems [7]. In particular, missed de-
tection may result in the overlooking of important events in
the case of video summarization approaches like [28, 50, 33,
3]. An advantage of our approach is that users can still have
access to the entire video because the undetected parts are just
fast-forwarded, not eliminated. We also aim to reduce missed
detection of important events by using relaxing thresholds. As
discussed in the following section, the techniques can allow
us to have access to various cues related to important events
in everyday life.



Figure 2. An example of the elastic timeline: The elastic timeline generates fast-forwarded videos from original first-person videos. In this scenario,
users input their preferences of playback speed (10 times faster) and egocentric cues (emphasize person). The elastic timeline then highlights the
corresponding parts of a video that contain the camera wearer’s interaction with people. The highlighted parts are played at normal speed, while the
remaining parts are fast-forwarded.

THE EGOSCANNING INTERFACE
In this section, we first outline the proposed EgoScanning
interface. Essentially, this interface fast-forwards first-person
videos while keeping some parts of the videos played at slower
speed if they are potentially significant to users. Figure 2
shows an example of how videos are played with help from
the EgoScanning interface. The three main components are
described below.

Extraction of Egocentric Cues
First, it is automatically determined if certain egocentric cues
are observed in each frame of a video. These cues should be
general and applicable to first-person videos taken in various
scenarios. In addition, cue extraction methods should be robust
and fast enough to process long videos or multiple videos in
a reasonable amount of time. We therefore use the following
cues:

Movement & stop cues that reflect the movement of camera
wearers, such as walking and standing still. For example,
these cues can let us know when camera wearers change
places of activities or when they stop to find something
interesting. Since wearable cameras are typically mounted
on the head, such cues can be extracted easily by analyzing
camera motion [41].

Hand cue indicating when camera wearers use their hands in
the front. This cue is particularly crucial when reviewing
a variety of scenarios that require fine hand manipulations
(e.g., cooking or assembling). Accurate hand detection is
one of the major tasks in computer vision with first-person
videos and robust methods have been proposed [29].

Person cue that aims at detecting moments when camera
wearers interact with another person. This cue can be useful
when videos capture social scenes such as parties, meetings,
and collaborative work. Various off-the-shelf human detec-
tion methods (e.g., [47]) are available for the cue extraction.

User Inputs
Unlike typical video fast-forwarding or summarization tech-
niques, the proposed interface accepts user interactions to take
into account how much each egocentric cue is significant in
their ongoing tasks. For example, users who try to learn how to
use a skillet from professional videos can give more weight to
the “hand” cue, or those who want to recall who they met yes-
terday with their own videos can emphasize the “person” cue.
Users are also allowed to adjust how fast videos are played
(e.g., 10 times faster), as with a standard fast-forwarding inter-
face. These user inputs change the playback speed of videos
adaptively and give feedback to users in the elastic timeline
that follows.

Elastic Timeline
On the basis of the combination of cue extraction results and
user inputs, the timeline of a video is “elasticized” to empha-
size parts that are potentially significant to users. Intuitively, if
a certain part of a video contains the egocentric cues to which
a user gives more weight, this part will be played at original
speed. Otherwise, the part is fast-forwarded to the specified
speed (see also Figure 2). In addition, intervals of videos
where extracted cues are selected by users are highlighted in
red in the timeline, as shown in Figure 1.

A sketch of the algorithm to determine playback speeds is as
follows. Let ci,t 2 [0,1] be the extraction result (1 if extracted
and 0 otherwise) of the i-th egocentric cue at frame t. User
inputs are defined by wi in [0,1] as a relative weight on the
i-th cue and s 2 [1,2, . . . ] as the desired playback speed (i.e.,
s-times faster). With these notations, the importance of frame
t is first given by I(t) = Âi wici,t + a , where a 2 R+ is a
positive constant. Then, we fix the time to display frame t
to S(t) = T

s
I(t)

Ât I(t) , where T is the total number of frames. If
some frames are played slower than the original speed (i.e.,
S(t)> 1), we further modify display times of those frames to



Figure 3. Extracting egocentric cues from first-person videos. (a) Sparse optical flows for movement and stop cues; (b) Pixel-level hand detection for a
hand cue; (c) Object detection for a person cue.

S(t) = 1 and those of the other frames accordingly so that the
total playback time remains T

s .

IMPLEMENTATIONS
This section introduces several key implementations to repro-
duce the proposed EgoScanning interface. As stated earlier,
Figure 1 depicts the prototype interface that we used in the
user studies.

Extracting Egocentric Cues from First-Person Videos
To extract egocentric cues, we adopt off-the-shelf computer
vision techniques that can be implemented easily. Detection
thresholds are set for the hand and person detectors to reduce
missed detection of corresponding events at the cost of in-
creased false alarms. Detection thresholds are set for the hand
and person detectors to reduce missed detection of correspond-
ing events at the cost of increased false alarms.

Movement & stop cues
To detect camera motion (i.e., wearer’s head motion), we
implement the optical-flow-based motion detector proposed
in [39]. In this method, optical flows are computed at several
fixed points (Figure 3 (a)) and smoothed over time. Some
features extracted from the flows (e.g., flow amplitude) are
then trained with a binary classifier such as a support vector
machine to classify if a wearer was moving or not at every
frame. Frames that are classified into the ’moving’ class fi-
nally obtain 1 for the movement cue and 0 for the stop cue.
Otherwise, the values 0 and 1 are assigned to the movement
and stop cues, respectively.

Hand cue
We use the hand detector pre-trained with a first-person video
dataset [29]. Based on color and texture features, this detector
judges if each pixel in the frames belongs to hands or not, and
thus is able to extract regions of hands accurately (Figure 3(b)).
In our interface, the hand cue obtains 1 if hand regions occupy
more than 5 % of a video frame size, and otherwise gets 0.

Person cue
We detect regions where people appear in first-person videos
by a state-of-the-art object detector named faster-RCNN [47].
With this detector, objects are detected with a rectangular
bounding box and classified into one of several classes (Fig-
ure 3 (c)). The value 1 is assigned to the person cue if frames
contain bounding boxes of the people class that are larger than
20 % of a video frame size. The cue obtains 0 otherwise. To
reduce detection time, the system applies the detector to every

six frames of a video. The skipped frames have the same
values as the most recent frame.

Preprocessing and postprocessing
While original videos are taken at the HD resolution, we resize
them into VGA or QVGA sizes to complete the aforemen-
tioned processes in a reasonable time. In order to cope with
spontaneous detection failures, for each cue we apply a me-
dian filter with the kernel size of 31 over time. We also use a
Gaussian filter with the kernel size of 45 to smooth detection
results over time (and as a result, each cue is represented by a
real value).

User Interface
Our prototype interface (shown in Figure 1) has several control
sliders that allow users to specify importance weights to each
egocentric cue (bottom-left) and preferred playback speeds
(bottom). Inputs through these sliders are reflected immedi-
ately to the playback speed of the video at the top left as well
as the elastic timeline (second line from the bottom); intervals
that obtain more importance weights are highlighted in red
and played at original speed. Users are allowed to jump to
arbitrary frames via the elastic timeline. Links to other videos
are also implemented at the top-right.

USER STUDY
We conducted a series of user studies to investigate how the
proposed EgoScanning interface helped users to scan first-
person videos. The main hypothesis posed in this work is:

“with the help from the combination of egocentric cues and
user inputs, the proposed EgoScanning interface can allow
participants to find events related to their interests quickly.”
To validate this hypothesis qualitatively and quantitatively,
participants were asked to perform three realistic tasks of
finding some pre-defined events from videos.

Conditions of Experiments
We recruited 16 participants (Female: 3) who were graduate
students or postdoc in the computer science and engineering
fields. All of the participants had experience using video
player interfaces (e.g., YouTube).

We compared the EgoScanning interface with a simple base-
line interface that just allowed users to fast-forward videos
at arbitrary uniform speed. With the EgoScanning, partici-
pants were able to input their preferences on egocentric cues
and playback speeds. In contrast, we disabled the control
sliders of egocentric cues in the baseline interface. Note that



other widgets (e.g., the control slider of the playback speed)
remained available, as in the proposed interface. By default,
the playback speed was set to 8 times faster in both of the
interfaces.

Tasks
We designed three tasks to find some events from first-person
videos. To make our user study realistic, videos taken in
a variety of scenarios were used: visual surveillance (Task
1), navigation (Task 2), and cooking (Task 3). We recorded
a new first-person video dataset for Task 1 while existing
datasets were used in the remaining tasks (the Navigation
dataset [54] for Task 2 and the GeorgiaTech Egocentric Activ-
ities dataset [11] for Task 3).

We divided each dataset into two video subsets, A and B, and
used one with the EgoScanning and the other with the baseline.
For each dataset, we preliminarily defined several events that
participants were asked to find. Table 1 presents more details
on the datasets.

Task 1: Finding events from a long video
In Task 1, participants tried to find certain events from first-
person videos during a visual surveillance task. In each video,
camera wearers walked inside a large building for 30 minutes
and took the following actions: pushing light switches (a
number of times), feeding paper into a printer (4 times), and
reporting to a colleague (twice), as shown in Figure 4. We
asked participants to find the latter two events. This task is
designed to be a practical task of reviewing the work histories
of others in the context of work training.

Figure 4. Videos used in Task 1: Participants were asked to search each
video for the actions (feeding paper into a printer and reporting to a
colleague.)

Task 2: Finding attractive objects from multiple videos
In Task 2, participants were asked to find some attractive ob-
jects from multiple first-person videos recorded in several
indoor/outdoor environments [54]. Specifically, camera wear-
ers walked around the environment to look at attractive objects
such as map signs, vending machines, and the entrance of a
store for a short time period. We chose 16 videos from the
original 44 videos for our study. Specific appearances of ob-
jects used in the experiments are shown in Figure 5. Task 2
can be interpreted as a scenario of making a navigation plan
using first-person videos.

Task 1 Task 2 Task 3

Dataset Our dataset [54] [11]
Test sets A B A B A B
Videos 1 1 8 8 8 8
Total times 30:00 30:00 23:30 24:03 26:40 27:45
Fps 30 30 30 30 15 15

Target time
1st event 8:00 4:57 3:39 2:49 4:15 10:19
2nd event 14:13 8:30 9:03 10:08 13:41 15:44
3rd event 15:00 11:20 22:23 16:21 16:38 22:30
4th event 17:10 13:57 – – – –
5th event 21:45 20:28 – – – –
6th event 27:55 24:20 – – – –

Computation time
M&S cues 41:33 39:36 46:40 47:44 23:32 24:00
Hand cue 29:45 30:26 25:55 25:48 20:07 20:34
Person cue 56:21 55:56 46:08 46:09 24:56 25:57

Detection accuracy
M&S cues 0.85 0.93 0.86 0.85 – –

Precision 0.84 0.94 0.86 0.85 – –
Recall 0.99 0.99 0.98 0.98 – –

Hand cues 0.90 0.88 – – 0.62 0.68
Precision 0.54 0.33 – – 0.62 0.68
Recall 0.83 0.93 – – 0.95 0.95

Person cues 0.99 0.99 0.98 0.92 – –
Precision 0.68 0.69 0.26 0.47 – –
Recall 0.96 0.94 1.00 0.89 – –

Table 1. Three datasets used in our user study: The first row gives
basic information on the three datasets. The second row shows compu-
tation time of egocentric cues in the preprocessing. The third row in-
dicates time of target events in the test sets of each task. We measured
the computation time of each egocentric cue on a desktop computer with
an Intel i7-4790K CPU, NVIDIA TITAN X GPU, and 32Gb RAM. The
movement, stop, and hand cues were extracted in a single processor. To
process the person cue, we used GPU acceleration. The fourth row shows
detection accuracy of egocentric cues (Recall and Precision). We mostly
did not observe hand-related events in Task 2 or movement-related and
person-related events in Task 3.

Task 3: Finding actions from multiple videos
Task 3 required participants to find important hand actions
from multiple first-person videos of a cooking scene. We
used the GeorgiaTech Egocentric Activities (GTEA) dataset
[11] that contains 28 videos of cooking activities recorded
by four camera wearers. We chose to use 16 videos for the
experiments. The action of pouring a drink was the target to
be found. Figure 6 shows some examples of target actions.
Although the presence of hands in videos is a salient cue for
finding hand actions, this task is probably the hardest among
the three even for the proposed interface because hands are
visible almost all the time during the recordings. With this
task, we aim to see how the proposed interface works with
such a difficult situation.

Procedure
At the beginning of the session, participants filled out a pre-
study questionnaire on their prior experience of using video
interfaces. We then gave them brief explanations of the user



Figure 5. Target objects in Task 2.

Figure 6. Examples of target actions.

study and tasks. The order of experiment conditions and test
sets was randomized to maintain a counterbalance (i.e., this
study needed 16 participants). Before using each interface, the
participants performed one or two example tasks to understand
how the interfaces worked. Sessions proceeded as follows:
with one interface, participants first conducted all three tasks
once. Then they filled out a questionnaire about the interface
being used. After that, participants used the other interface
and conducted the three tasks again with different video sub-
sets. The questionnaire was then filled out again. Finally, we
conducted an interview session with the participants. Each
experiment took about half an hour in total.

Evaluation Measures
Task completion time
To determine the effectiveness of the EgoScanning, we mea-
sured the task completion time for each task. We expect that
this time will decrease if participants find events quickly. We
therefore compared the two interfaces quantitatively by using
the Wilcoxon signed-rank test and confidence interval of the
difference of means to reveal significance effects.

Average scanning speed
We then calculated the average scanning speed for each task
and for all tasks. This metric shows how fast each interface
allows users to use the playback speed. To calculate the metric,
we used task completion times and final event times of each
test set, as the participants reviewed videos of each test set
from beginning to end in order. We thus simply calculated the
reviewed times of the video per second by FinalEventTime

TaskCompletionTime
as scanning speeds. Larger values indicated faster scanning
speeds. We also compared the two interfaces by using the
Wilcoxon signed-rank test and confidence interval of the dif-
ference of means to reveal significance effects.

Utilization ratio of egocentric cues
We computed the utilization ratios of egocentric cues for each
task to see which cues were useful. We assumed that the
utilization ratio can be diverse depending on the task. To
calculate utilization ratios, we used manipulation logs of the
proposed interface. We judged whether participants used an
egocentric cue if the corresponding user input value exceeds
0.1. We then computed temporal averages of each egocentric
cue as the utilization ratios for all tasks.

Questionnaire
After each condition , the participants answered questions
on a seven-point scale (strongly disagree = 1, neutral = 4,
strongly agree = 7). We also used the Wilcoxon signed-rank
test to determine whether there were significant differences
in the participants’ experience. Specifically, we asked the
participants the following five questions: Q1) Could you use
the interface easily? Q2) Could you complete tasks easily?
Q3) Did you understand the contents of the videos? Q4) Did
you feel any visually induced motion sickness? and Q5) Did
you enjoy using the interface?

After completing the tasks in both conditions, the participants
answered an extra five questions about the functions of the
proposed interface on a seven-point scale. The extra questions
were: EQ1) Was the elastic timeline useful? EQ2) Were
the Movement & Stop cues useful? EQ3) Was the Hand cue
useful? EQ4) Was the Person cue useful? and EQ5) Were the
multiple egocentric cues necessary?

Observation and interview
We observed the participants to see how they found the events
of search targets using each interface. After each user com-
pleted all tasks, we interviewed them for about 5 min. For the
most part, our interviews were semi-structured so as to focus
on the experience. First, we asked the participants about the
proposed interface, namely, “Did you use the functions of the
elastic timeline for finding events? And if so, how?”1 We fur-
ther inquired as to their usages of the proposed interface based
on observations. Finally, we asked the participants, “Can you
recommend any new functions to improve the proposed inter-
face?” and “How did you find the events using the baseline
interface?”

RESULTS

Task Completion Time
The upper half of Table 2 shows the results of task completion
time. Overall, the proposed interface achieved faster results
than the baseline interface. The Wilcoxon signed-rank test
revealed a significant difference between the proposed and
baseline interface in both the individual tasks and the tasks
as a whole (p = 0.02, p = 0.01, p = 0.05, and p = 0.01, re-
spectively). A 95 % confidence interval of the difference of
means revealed that the proposed interface could significantly
reduce task completion times in all tasks. These results sup-
port our hypothesis that the proposed interface enables faster
task completion time.
1In this paper, italic fonts in double quotations denote translated
speech from other languages.



Wilcoxon:
Baseline/Proposed

95% confidence interval of
difference of means

99% confidence interval of
difference of means

Baseline: Average (Std) Proposed: Average (Std) p Z Lower bound Upper bound Lower bound Upper bound

Task Completion Time
Task 1 173.65 (62.50) 126.00 (25.38) .02⇤ -2.39 -81.80 -13.48 -92.60 -2.68
Task 2 182.23 (52.65) 116.20 (38.55) .01⇤ -3.08 -88.54 -43.52 -95.66 -36.40
Task 3 144.29 (55.95) 108.75 (52.34) .05⇤ -2.18 -70.41 -0.67 -81.44 10.36
Total 500.17 (131.33) 350.95 (91.19) .01⇤ -3.26 -203.36 -95.08 -220.49 -77.96

Average Scanning Speed
Task 1 10.05 (3.18) 13.26 (3.05) .02⇤ -2.32 0.80 5.62 0.03 6.39
Task 2 7.15 (2.19) 11.02 (3.44) .01⇤ -2.70 1.78 5.96 1.11 6.62
Task 3 9.31 (4.52) 12.29 (3.40) .01⇤ -2.70 0.44 5.51 -0.37 6.32
Total 8.84 (2.87) 12.20 (2.22) .01⇤ -2.95 1.79 4.91 1.30 5.40

Table 2. Results of task completion time and average scanning speed: This table contains averages and standard deviations in baseline and proposed
interfaces for the Wilcoxon signed-rank test (“*” indicates the significance). Results of 95 % and 99 % confidence intervals of difference of means are
also shown.

Figure 7. Utilization ratios of egocentric cues.

Average Scanning Speed
The lower half of Table 2 shows the average scanning speeds
in each task and total averages. Not surprisingly, the results
are similar to the task completion times. By conducting the
Wilcoxon signed-rank test, we observed a significant increase
of average scanning speed (p = 0.02, p = 0.01, p = 0.01, and
p = 0.01, respectively). A 95 % confidence interval of the
difference of means also indicates that the proposed interface
can help users increase the scanning speeds in all tasks. As
for the total average, we confirmed a 38 % increase of the
scanning speed with the proposed interface.

Utilization ratio of egocentric cues
Figure 7 shows the utilization ratios of egocentric cues in
each task. The result indicates there is a large variance in the
utilization ratio across tasks. This implies that the participants
tried to select relevant cues to events of search targets. In
Task 1, nearly half of the participants combined the Hand and
Person cues to find query events, while the other participants
used only the Stop cue. In Tasks 2 and 3, the participants
mainly used the Stop and Hand cues, respectively.

Questionnaire
Figure 8 shows the questionnaire results. The Wilcoxon
signed-rank test revealed significant differences in Q1) ease
of using interface, Q2) ease of task, and Q5) enjoyable experi-
ence (p = 0.01). Interestingly, 63% of the participants (10/16)
did not report any visually induced motion sickness during the
three tasks in both of the interfaces.

Figure 8. Results of questionnaire.

As for the extra questions, we received positive feedback (i.e.,
5, 6, or 7 scales) from most participants. The positive feedback
ratios of EQ1–5 were 100% (16/16), 88% (14/16), 88%, 88%,
and 88%, respectively.

Feedback and Observation
Here, we discuss the qualitative results elicited from observa-
tion and feedback of the participants. Overall, it seems that
the participants used the proposed interface effectively, as indi-
cated by comments such as “I really like this interface because
I could see important scenes when I used very high speed play-
back,” “I didn’t need to see unnecessary information. I could
find targets when playback speeds became slower,” and “This
function (the elastic timeline) was very useful for watching
videos. I could reduce the time to watch the videos.”



Figure 9. Typical results of elastic timeline usage in the user study.

Most of the participants preferred the highlighted parts of
the elastic timeline. Figure 9 (a)(b) shows typical results of
the elastic timeline that emphasize the candidates of query
events in Tasks 1 and 2. Almost half the participants moved
the slider of the video timeline to emphasized regions, which
enabled them to quickly review candidates of target events.
User comments included “I could understand where important
scenes were located,” “I felt that I could watch videos more
easily because I only needed to check the highlighted areas,”
and “I manually moved the slider to the highlighted parts. I
felt finding targets was very easy.”

Using the proposed interface, participants could quickly select
egocentric cues depending on the tasks. Selected cues were
mostly relevant to the events of search targets. User comments
included, “Manipulating the interface was very easy. I could
quickly grasp how to use it,” “I could predict what cues should
be selected. This interface immediately emphasized the video
timeline,” and “I really like the Hand and Stop cues. It was
really useful to find the camera wearers’ actions.”

Surprisingly, in Task 3, the proposed interface could reduce
the task completion time by emphasizing the Hand cue, even
though all videos used in this task frequently showed the
camera wearers’ hands and contained false alarms of hand
detection (Figure 9 (c)). We received positive feedback from
some participants, with comments including “When I used
the Hand cue, many parts of the video were emphasized. But,
for me, it is still useful to specify the candidates of target
actions” and “I could still believe that the interface made
playback speeds slower in important scenes.” In contrast,
we also received some negative feedback, such as “I was
confused in Task 3, because lots of parts in the timeline were
highlighted.”

Many participants requested new features of the proposed
interface in order to find objects in the first-person videos for
Task 3, as indicated by comments such as “In Task 3, I focused
on objects that were manipulated by hands. I wish there was a
function that enabled me to search objects from videos” and
“I believe objects-based retrieval is really important for this
interface. But, I have no idea how that could be done.”

Using the baseline interface, the participants set a slower play-
back speed than the proposed interface, or manually sought
the slider of the video timeline to find events of search targets:
“I set 4–6 times faster playback speeds to view the videos. I felt
it was difficult to find events at a faster speed” and “I didn’t
think I would be able to find events with simple fast-forwarding
playback, so I always moved the slider manually.”

DESIGN IMPLICATION
Overall, we found statistical and qualitative evidence that the
proposed interface was beneficial to the participants in carry-
ing out event-finding tasks from first-person videos. We now
summarize three important benefits provided by the proposed
interface.

Faster speed playback of first-person videos with egocen-
tric elastic timeline
With the elastic timeline, the participants could watch a fast-
forwarded first-person video with reduced effort, as the play-
back speed of the video was changed adaptively depending
on egocentric cues selected by the participants. Video frames
corresponding to the selected cues were played more slowly
than other parts of the video. This allowed the participants to
examine those frames more carefully to find target events. We
also observed increased scanning speeds with statistical signif-
icance in all of the tasks. We thus argue that the adaptive con-
trol of playback speed enables users to watch fast-forwarded
first-person videos more easily.

Emphasized frames as candidates of important events
Emphasized parts of videos can act as candidates of events
that are actually significant to users. On the basis of selected
egocentric cues, the proposed interface extends and empha-
sizes parts of the video timelines. The participants could thus
predict where target events were located in the videos. Most
of the participants believed that emphasized regions included
important events. Some participants further moved the slider
of the video timeline to emphasized regions. As a result, we
observed significant reduction of task completion time in all
tasks. We argue that users quickly grasp candidates of events
from the emphasized timeline to achieve faster event findings.

Providing a set of important egocentric cues
The participants were able to select relevant egocentric cues
depending on the query events of their interest. The proposed
interface provided a set of egocentric cues that can be robustly
extracted by computer vision techniques despite significant
variance in first-person videos. We observed in the user study
that the participants quickly selected egocentric cues that were
appropriate for finding particular targets, and that selected
egocentric cues varied significantly among the three tasks.
This suggests that it is important to provide a set of important
fundamental cues in order to assist users to find events related
to their interest more efficiently.

LIMITATION
We used three computer vision techniques to analyze first-
person videos in the preprocessing. Extracting egocentric cues
worked well with the three first-person video datasets used
in the user study that contained various scenes such as out-
door, office, and large hallway environments. However, the
computer vision techniques could still fail in some first-person
videos recorded in complicated scenes. In particular, the cur-
rent techniques cannot find Hand and Person cues correctly
in crowded scenes under severe lighting conditions. In such
cases, it is not easy to choose appropriate detection thresholds
automatically. One possible way to alleviate the problem is to



allow users to adjust thresholds as they perform a task using
the proposed interface.

Furthermore, it was reported by the participants that object-
level cues to locate objects of certain types would have been
helpful in addition to the egocentric cues. Other egocentric
cues such as staring at an object, standing up/sitting down,
and looking around can be useful for carrying out various
tasks, so allowing users to use additional cues in the proposed
interface would be beneficial. On the other hand, having too
many egocentric cues may make the proposed interface overly
complicated and thus more difficult for users to choose and
adjust the cues needed to do a certain task. We therefore plan
to further investigate which sets of egocentric cues are robustly
extracted and useful for the elastic timeline in many situations.

CONCLUSION AND FUTURE WORK
We introduced a video fast-forwarding interface and investi-
gated how this interface helped users scan first-person videos
efficiently to find events related to their interest. The results of
user studies with three realistic tasks showed that users with
the proposed interface were able to reduce task completion
times and scan videos faster on average. We also confirmed
three significant effects of using the interface. We believe
that our interface can be applied to various tasks that use first-
person videos, including but not limited to life-logging [1, 16,
49, 23] and collaborative systems [13, 20].

While we tested a limited number of egocentric cues, a va-
riety of computer vision techniques can be applied to use
other egocentric cues. For example, action recognition from
first-person videos [34] could help us to find events of a spe-
cific fine-grained action (e.g., the action of “pouring milk
into a bowl”). One interesting direction for future work is to
introduce many types of egocentric cues and manage them
intelligently so that they can be accessed by users easily. This
will allow us to address more challenging scenarios where
finer-grained egocentric cues and more efficient methods of
user input will be necessary, such as helping users learn skills
from videos taken by professionals or helping them find im-
portant moments from videos recorded over the period of a
week.
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